KAESER FILTER

KF F6 to F320 Series
Clean compressed air at low cost
Flow rate 0.6 to 32.0 m³/min, Pressure 2 to 16 bar

www.kaeser.com
Clean compressed air at low cost

Standard-compliant purity

The KAESER FILTER range uses modern deep-pleated filter media to remove particles and aerosols. Highly effective carbon matting traps oil vapours. Together with innovative flow dynamics, they deliver exceptional filtration efficiency with minimal pressure loss. The impressive performance data of KAESER FILTER products have been determined in accordance with ISO 12500 and confirmed by the independent “Lloyd’s Register” testing agency.

Minimal pressure loss, maximum savings

The efficiency of a compressed air filter depends most of all on pressure loss. KAESER FILTER products feature generously-sized housings and filter surfaces, innovative flow dynamics and high-performance filter media. These features result in up to 50% lower pressure loss in comparison to other filters on the market – a value that remains virtually constant throughout the entire service life of the filter element. This reduces the load on upstream compressors, thereby creating the potential for significant reductions in costs and CO₂ emissions.

Service-friendly design, straightforward handling

KAESER FILTER products feature a corrosion-resistant aluminium housing and stable filter elements. The practical bayonet lock ensures automatic positioning of the housing and element seals. Both seals are components of the filter element, which means that the filter housing can be sealed only if a filter element has been inserted. A locking screw provides venting for the housing and prevents unintentional opening whilst under pressure.

Coalescence filter example

- Flow rate 17.7 m³/min
- 50% lower pressure loss
- 6.55 kW/(m³/min)
- Additional energy requirement 6% per bar
- Cost of power: €0.2/kWh
- 8760 operating hours p.a.
- Annual debt service over 10 years
(1) Compressed air inlet
(2) Connection flange, configurable nominal sizes
(3) Element head with housing and element seal
(4) Filter element
(5) Condensate outlet (here with automatic condensate drain)
(6) Compressed air outlet
(7) Locking screw
(8) Bayonet lock with limit stop
(9) Vent hole
(10) Differential pressure gauge
KAESER FILTER products are available in four high-performance filter grades and can easily be connected to create filter combinations.

When used in combination with compressed air dryers and air-main charging systems from KAESER, they ensure dependable and energy-efficient compressed air treatment wherever it is needed, whenever it is needed.
NF F6 – F320 Series

Low differential pressure for maximum efficiency

Every bar of pressure loss increases your energy costs by 6% per m³/min of compressed air. This rule of thumb shows that generously-sized KAESER FILTER products pay for themselves quickly.

Large flow cross-section

KAESER FILTER products use filter elements with flow-optimised element heads. The filter inlet is offset towards the air inlet. This increases the flow cross-section at the air discharge side and further contributes to outstanding filter efficiency with minimal pressure loss.

Wide connection flanges

Generously-dimensioned connection flanges on KAESER FILTER products help keep pressure losses to a minimum. Since KAESER FILTER products are available with air connection flanges of various sizes, there is no need for reducer sections when connecting to different air distribution networks.

Low flow resistance

The polyester material used in the filter drainage layer ensures rapid oil drainage (left). Moreover, to achieve optimum filtration and contaminant retention with minimal pressure loss, KAESER particulate and coalescence filters feature high void volume filter media (right).

High contaminant retention capacity

KAESER FILTER products demonstrate a lower pressure loss right from the outset compared to other filters typically available on the market. Moreover, the pressure loss remains low for much longer, thanks to the high contaminant retention capacity. The result: low operating costs over the long term. The annual maintenance of particulate and coalescence filters mitigates age-related risks and ensures maximum compressed air purity.
Optimum flow distribution

The element head of KAESER FILTER units is optimised for best possible air flow. Its tapered internal structure channels the compressed air towards the centre of the element interior for an even charging of the filter media. The result: high filtering efficiency with minimal pressure loss.

Deep-pleated filter elements

The deep-pleated KAESER particulate and coalescence filter elements feature exceptionally large filter surfaces. Through the resulting increase in efficiency, operating costs are significantly reduced compared to conventional filter designs.

High-efficiency carbon matting

Unlike conventional filters, KAESER activated carbon filters with high-efficiency carbon matting prevent channelling whilst also ensuring reduced differential pressure. Moreover, the matting provides highly effective protection against particle release.

Application-tailored combinations

KAESER FILTER products can be combined flexibly at the user-end with optional connection kits. For example, the “Carbon Combination” - consisting of a KE coalescence filter (left) and a KA activated carbon filter (right) - not only retains aerosols and particulate matter, but also oil vapours.

Standard-compliant purity in every quality class

Generously-dimensioned KAESER FILTER products have proven themselves in the most sophisticated of testing environments and in stringent measurement programmes. KAESER FILTER products are dependable and efficient – and are certified to prove it.
<table>
<thead>
<tr>
<th>Degree of filtration</th>
<th>KB</th>
<th>KE</th>
<th>KD</th>
<th>KA</th>
<th>KBE</th>
<th>KEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescence filter Basic</td>
<td>< 140 mbar</td>
<td>< 200 mbar</td>
<td>< 30 mbar (New, dry)</td>
<td>< 40 mbar (New, dry)</td>
<td>< 200 mbar</td>
<td>< 240 mbar</td>
</tr>
<tr>
<td>Coalescence filter Extra</td>
<td>10 mg/m³</td>
<td>10 mg/m³</td>
<td>–</td>
<td>–</td>
<td>10 mg/m³</td>
<td>10 mg/m³</td>
</tr>
<tr>
<td>Particulate filter Dust</td>
<td>< 0.1 mg/m³</td>
<td>< 0.01 mg/m³</td>
<td>–</td>
<td>–</td>
<td>< 0.01 mg/m³</td>
<td>0.003 mg/m³ (Total oil content)</td>
</tr>
<tr>
<td>Activated carbon filter Adsorption</td>
<td>Deep-pleated with support structure and polyester drainage matting</td>
<td>Deep-pleated with support structure</td>
<td>High-efficiency carbon matting</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Extra Combination</td>
<td>Combination of KB and KE; application as KA, but for higher compressed air quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination</td>
<td>Combination of KE and KA; filtration of aerosols, solid particles and oil vapours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aerosol content at inlet:
- KB: 10 mg/m³
- KE: 10 mg/m³
- KD: –
- KA: –
- KBE: 10 mg/m³
- KEA: 10 mg/m³

Residual aerosol content at outlet as per ISO 12500-1 *)
- KB: < 0.1 mg/m³
- KE: < 0.01 mg/m³
- KD: –
- KA: –
- KBE: < 0.01 mg/m³
- KEA: 0.003 mg/m³ (Total oil content)

Application:
- KB: Filtration of solid and liquid aerosols and solid particles
- KE: Same application as KB, but for higher compressed air quality
- KD: Exclusively for filtration of solid particles
- KA: Exclusively for removal of oil vapours
- KBE: Combination of KB and KE; application as KA, but for higher compressed air quality
- KEA: Combination of KE and KA; filtration of aerosols, solid particles and oil vapours

*) as per ISO 12500-1:06-2007

Image: Selection from the filter element range
SAFETY AND RELIABILITY

Easy element change

KAESER FILTER units can be opened easily by hand. Servicing is a quick and almost completely clean process. The filter element can simply be unscrewed once the filter housing with element is released from the head. Minimal installation space is required beneath the filter.

Corrosion-protected aluminium housing

The enclosures of KAESER FILTER products are cast from seawater-resistant aluminium. Several hundred hours of salt spray testing demonstrate their outstanding corrosion resistance.

Safe opening

A locking screw protects the filter housing from unintentional opening. If released, a seal is broken and a vent hole is uncovered. If pressure is present, the user hears the warning sound of escaping air.

Robust stainless steel cage

KAESER filter elements are protected by inner and outer cages made from continuously welded profiled stainless steel. These cages are far more resistant to mechanical stress than those made from simple expanded metal.

KF F185 – F3360 Series

KAESER understands our customers’ needs very well, as the company itself operates numerous compressed air stations. From first-hand experience, we are well-versed in all aspects of compressed air station planning, commissioning, operation and maintenance. We draw on this expertise to create user-friendly and low-maintenance products.
To ensure that low energy costs and the required compressed air purity level are consistently maintained, the filter elements should be replaced at the end of their service life. Dependable aerosol filtration also requires dependable condensate drainage. The ECO-DRAIN 31 F Vario automatic condensate drain was especially designed for use with coalescence filters. Accumulating condensate is reliably removed with no loss of pressure.

Service life monitoring

The ECO-DRAIN 31 F condensate drain not only monitors its own service interval but also that of the connected compressed air filter element. Service interval status is indicated via LEDs and a floating warning contact.

Dependable and loss-free

With contact-free sensing, ECO-DRAIN condensate drains detect the fill level and drain the condensate away, without any loss of pressure, via a pilot-controlled diaphragm valve. The large flow cross-sections eliminate the need for maintenance-intensive strainers.

Self-monitoring

Should an issue with condensate drainage occur, the ECO-DRAIN valve opens at short intervals for one minute. If the condensate does not drain, a message is triggered and the valve opens every 4 minutes for 7.5 seconds. Once the condensate drains, the ECO-DRAIN reverts back to normal operation.

Checked for leaks and proper functioning

All wearing components of the ECO-DRAIN 31 F can be replaced with the service unit replacement without the need to change the seal. For trouble-free maintenance, the condensate drain and service unit are 100% factory-tested for leaks and proper functioning before leaving the plant.
<table>
<thead>
<tr>
<th>Degree of filtration</th>
<th>ECO-DRAIN 31 F</th>
<th>ECO-DRAIN 30</th>
<th>Automatic condensate drain</th>
<th>Manual condensate drain</th>
<th>Mechanical differential pressure gauge</th>
<th>Differential pressure transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE</td>
<td>Selectable</td>
<td>Selectable</td>
<td>Selectable</td>
<td>Selectable (for use as microparticle filter downstream from KD filter)</td>
<td>Selectable</td>
<td>Selectable</td>
</tr>
<tr>
<td>From F142</td>
<td>Selectable</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KB</td>
<td>Selectable</td>
<td>Selectable</td>
<td>Selectable</td>
<td>-</td>
<td>Selectable</td>
<td>Selectable</td>
</tr>
<tr>
<td>From F142</td>
<td>Selectable</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Standard</td>
<td>Selectable</td>
<td>Selectable</td>
</tr>
<tr>
<td>From F142</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Standard</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>From F184</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Image: Coalescence filter with ECO-DRAIN 31 F
Consistently high efficiency

Fitted as standard to KAESER particulate and coalescence filters, the differential pressure gauge enables the operator to monitor pressure losses (i.e. efficiency) at a glance. Unlike other systems commonly available on the market, the contaminated and clean air sides are isolated from one another.
Equipment

Coalescence filter with ECO-DRAIN 31 F

Corrosion-protected, coated aluminium housing with connection flanges (configurable nominal widths); locking screw; differential pressure gauge and swivel ball valve (components fully assembled); KB or KE filter element and ECO-DRAIN 31 F electronic condensate drain with maintenance management (included).

Coalescence filter with ECO-DRAIN 30

Corrosion-protected, coated aluminium housing with connection flanges (configurable nominal widths); locking screw; differential pressure gauge and swivel ball valve (components fully assembled); KB or KE filter element and ECO-DRAIN 30 electronic condensate drain (included); up to model F142.

Coalescence filter with automatic condensate drain

Corrosion-protected, coated aluminium housing with connection flanges (configurable nominal widths); locking screw; differential pressure gauge and automatic condensate drain (components fully assembled); KB or KE filter element (included); up to model F142.
Corrosion-protected, coated aluminium housing with connection flanges (configurable nominal widths); locking screw; differential pressure gauge and manual condensate drain (components fully assembled); KD or KE filter element (included)

ECO-DRAIN 30

Ensures exceptionally safe, reliable condensate drainage without compressed air loss - even under conditions with widely fluctuating condensate accumulation and high particulate / oil content; simple function monitoring at the touch of a button; service unit 100% factory-tested for easy, trouble-free maintenance

Particulate filter

Activated carbon filter

ECO-DRAIN 31 F

For use with aerosol filters; ensures safe and reliable condensate drainage without compressed air loss; maintenance management system displays elapsed replacement interval for the filter element and service unit (via LED); message for elapsed maintenance intervals provided via floating service contact; additional floating contact to relay alarm; function test button
Further options

Various connection sizes
A range of factory-installed connection flanges is available within each size range of KAESER FILTER products. There is a choice of BSP and NPT threaded connections. KAESER FILTER products can therefore be adapted to the user-end pipe distribution network with no need for reducer sections.

Differential pressure transducer
Instead of the mechanical differential pressure gauge, KAESER FILTER products can be equipped with an optional differential pressure transducer (factory-fitted). Along with the differential pressure, the three-wire sensor transmits the air main pressure downstream from the filter as a 4–20 mA signal. Both values can then be passed on to master control systems such as the SIGMA AIR MANAGER 4.0 and from there can also be transmitted to the SIGMA NETWORK.

Accessories

Flange adapter DN 80 / 3 FLG
For 3-inch connections, flange adapters (DN 80 / 3 FLG) at nominal pressure rating PN16 are available as accessories from model F184 upwards. In the DIN version, they correspond to the DIN EN 1092-1 standard. In the ASME version they meet the criteria for the ANSI B16.5 - Class 150. The flange adapters have a high-quality anti-corrosion coating and finish.
Connection kit

Several KAESER FILTER units can easily be combined at the user-end with the optional connection kit. It contains the required screws, a gasket and the assembly tool.

Wall-mounting kit

Perfectly fitted and stable wall-mounting brackets are available as an optional accessory for KAESER FILTER units, attaching easily to the connection flanges. The kit permits mounting of filter combinations comprising up to three filters. The installation tool required for attachment to the filter head is included.

Silicone-free version

KAESER FILTER products also include optional silicone-free versions that are compliant with test standard PV-VW 3.10.7. Each filter undergoes an individual coating test to confirm compliance. The supplied manufacturer’s certificate attests that the product is silicone-free. Moreover, all filter elements for KAESER FILTER products are manufactured silicone-free in accordance with this regulation as standard.
Dimensions

Model F6 to F320

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>%</td>
<td>283</td>
<td>306</td>
<td>232</td>
<td>155</td>
<td>87</td>
<td>90</td>
<td>≥ 40</td>
</tr>
<tr>
<td>F9</td>
<td>%</td>
<td>315</td>
<td>340</td>
<td>259</td>
<td>164</td>
<td>98</td>
<td>100</td>
<td>≥ 40</td>
</tr>
<tr>
<td>F16</td>
<td>%</td>
<td>365</td>
<td>390</td>
<td>308</td>
<td>237</td>
<td>153</td>
<td>130</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F22</td>
<td>%</td>
<td>365</td>
<td>390</td>
<td>308</td>
<td>237</td>
<td>153</td>
<td>130</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F26</td>
<td>%</td>
<td>365</td>
<td>390</td>
<td>308</td>
<td>237</td>
<td>153</td>
<td>130</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F46</td>
<td>%</td>
<td>386</td>
<td>411</td>
<td>312</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F83</td>
<td>%</td>
<td>471</td>
<td>496</td>
<td>397</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F110</td>
<td>%</td>
<td>671</td>
<td>696</td>
<td>597</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F142</td>
<td>%</td>
<td>671</td>
<td>696</td>
<td>597</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F184</td>
<td>%</td>
<td>732</td>
<td>754</td>
<td>643</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F250</td>
<td>%</td>
<td>860</td>
<td>882</td>
<td>771</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
<tr>
<td>F320</td>
<td>%</td>
<td>1002</td>
<td>1024</td>
<td>913</td>
<td>292</td>
<td>186</td>
<td>150</td>
<td>≥ 50</td>
</tr>
</tbody>
</table>

G compressed air connections as per ISO 228, optional NPT connections as per ANSI B 1.20.1.

Views

Models shown: F16/F22/F26

Front view | Front view | Front view (wall-mounted) | Left side view (wall-mounted)
Technical specifications

For models F6 to F320 and filter grades KB/KE/KA/KD

<table>
<thead>
<tr>
<th>Model</th>
<th>Flow rate 1</th>
<th>Gauge pressure</th>
<th>Ambient temperature</th>
<th>Compressed air inlet temperature</th>
<th>Maximum mass</th>
<th>Electrical supply, ECO-DRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/min</td>
<td>bar</td>
<td>°C</td>
<td>°C</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>0.60</td>
<td>2 to 16</td>
<td>+3 to +50</td>
<td>+3 to +66</td>
<td>3.3</td>
<td>95…240 VAC ±10% (50…60 Hz) / 100…125 VDC ±10%</td>
</tr>
<tr>
<td>F9</td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>F16</td>
<td>1.60</td>
<td>2 to 16</td>
<td>+3 to +50</td>
<td>+3 to +66</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>F22</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>F26</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>F46</td>
<td>4.61</td>
<td></td>
<td></td>
<td></td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>F83</td>
<td>8.25</td>
<td>2 to 16</td>
<td>+3 to +50</td>
<td>+3 to +66</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>F110</td>
<td>11.00</td>
<td></td>
<td></td>
<td></td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>F142</td>
<td>14.20</td>
<td></td>
<td></td>
<td></td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>F184</td>
<td>18.40</td>
<td></td>
<td></td>
<td></td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>F250</td>
<td>25.00</td>
<td>2 to 16</td>
<td>+3 to +50</td>
<td>+3 to +66</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>F320</td>
<td>32.00</td>
<td></td>
<td></td>
<td></td>
<td>19.9</td>
<td></td>
</tr>
</tbody>
</table>

1 Performance data at 7 bar gauge pressure relative to 1 bar ambient pressure (absolute) and +20 °C. The flow rate will change for deviating operating conditions.

Degrees of filtration

<table>
<thead>
<tr>
<th>Degree of filtration</th>
<th>KB</th>
<th>KE</th>
<th>KD</th>
<th>KA</th>
<th>KBE</th>
<th>KEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of filtration</td>
<td>Coalescence filter</td>
<td>Coalescence filter</td>
<td>Particulate filter</td>
<td>Activated carbon filter</td>
<td>Extra Combination</td>
<td>Carbon Combination</td>
</tr>
</tbody>
</table>

- **Initial differential pressure at saturation**:
 - KB: < 140 mbar
 - KE: < 200 mbar
 - KD: < 30 mbar (New, dry) < 40 mbar (New, dry)
 - KA: < 200 mbar
 - KBE: < 240 mbar
- **Aerosol content at inlet**:
 - KB: 10 mg/m³
 - KE: 10 mg/m³
 - KD: –
 - KA: –
 - KBE: 10 mg/m³
 - KEA: 10 mg/m³
- **Residual aerosol content at outlet as per ISO 12500-1 1**:
 - KB: < 0.1 mg/m³
 - KE: < 0.01 mg/m³
 - KD: –
 - KA: –
 - KBE: < 0.01 mg/m³
 - KEA: 0.003 mg/m³ (Total oil content)
- **Application**:
 - KB: Filtration of solid and liquid aerosols and solid particles
 - KE: Same application as KB, but for higher compressed air quality
 - KD: Exclusively for filtration of solid particles
 - KA: Exclusively for removal of oil vapours
 - KBE: Combination of KB and KE; application as KE, but for higher compressed air quality
 - KEA: Combination of KE and KA; filtration of aerosols, solid particles and oil vapours

1 as per ISO 12500-1:06-2007

Calculating flow rate

Correction factors for deviating operating conditions (flow rates in m³/min x k...)

Deviating gauge working pressure p at filter inlet

<table>
<thead>
<tr>
<th>p bar</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_p</td>
<td>0.38</td>
<td>0.50</td>
<td>0.63</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.06</td>
<td>1.12</td>
<td>1.17</td>
<td>1.22</td>
<td>1.27</td>
<td>1.32</td>
<td>1.37</td>
<td>1.41</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Example:

- **Gauge pressure**: 10 bar (g) (See table)
 - $k_p = 1.17$

Selected compressed air filter: F 83 at 8.25 m³/min ($V_{\text{reference}}$)

- Max. possible flow rate under operating conditions
 - $V_{\text{max}} = V_{\text{reference}} \times k_p$
 - $V_{\text{max}} = 8.25 \text{ m}^3/\text{min} \times 1.17 = 9.65 \text{ m}^3/\text{min}$
The world is our home

As one of the world’s largest compressed air system providers and compressor manufacturers, KAESER KOMPRESSOREN is represented throughout the world by a comprehensive network of branches, subsidiary companies and authorised partners in over 100 countries.

With innovative products and services, KAESER KOMPRESSOREN’s experienced consultants and engineers help customers to enhance their competitive edge by working in close partnership to develop progressive system concepts that continuously push the boundaries of performance and compressed air efficiency.

Moreover, the decades of knowledge and expertise from this industry-leading system provider are made available to each and every customer via the KAESER group’s global computer network.

These advantages, coupled with KAESER’s worldwide service organisation, ensure that every product operates at the peak of its performance at all times and provides maximum availability.